রসায়ন অধ্যায় ৭ : রাসায়নিক বিক্রিয়া (কনসেপ্ট অংশ)

পদার্থের পরিবর্তন

যে কোনো পদার্থের পরিবর্তন ঘটে ঐ পদার্থের বাহ্যিক অবস্থা বা মূল গঠন এর। বাহ্যিক অবস্থার পরিবর্তনকে আমরা ভৌত পরিবর্তন বলি আর অভ্যন্তরীণ পরিবর্তন কে আমরা রাসায়নিক পরিবর্তন বলি।

তাহলে বলা যায় পদার্থের পরিবর্তন দুই প্রকার।

১। ভৌত পরিবর্তন: যে পরিবর্তনের ফলে কোনো পদার্থের মূল গঠনের কোনো পরিবর্তন ঘটে না অর্থাৎ কোনো নতুন পদার্থ উৎপন্ন হয় না, শুধু পদার্থের বাহ্যিক বা ভৌত অবস্থার রূপান্তর ঘটে সেই পরিবর্তনকে ভৌত পরিবর্তন বলে।

ভৌত পরিবর্তন অস্থায়ী। এই পরিবর্তনে পদার্থের অণুর গঠনের কোনো পরিবর্তন হয় না। বরফের গলন, পানির স্ফুটন, লোহার চুম্বকে পরিবর্তন, মোমের গলন ইত্যাদি ভৌত পরিবর্তনের উদাহরণ।

২। রাসায়নিক পরিবর্তন: যে পরিবর্তনের ফলে কোনো পদার্থের মূল গঠনের পরিবর্তন ঘটে এবং পদার্থটি এক বা একাধিক ভিন্ন ধর্মবিশিষ্ট নতুন পদার্থে পরিণত হয়, সেই পরিবর্তনকে রাসায়নিক পরিবর্তন বলে।

রাসায়নিক পরিবর্তন স্থায়ী হয়। আর রাসায়নিক পরিবর্তনকেই রাসায়নিক বিক্রিয়া বলে। যেমনঃ লোহায় মরিচা পড়া, মোমবাতির দহন, দুধ থেকে দই প্রস্তুত তৈরি ইত্যাদি রাসায়নিক পরিবর্তনের উদাহরণ।

রাসায়নিক বিক্রিয়াঃ যে প্রক্রিয়ায় এক বা একাধিক পদার্থ থেকে ভিন্ন ধর্মী এক বা একাধিক পদার্থ উৎপন্ন হয় তাকে রাসায়নিক বিক্রিয়া বলে। মূলত রাসায়নিক পরিবর্তনই হচ্ছে রাসায়নিক বিক্রিয়া।

বিক্রিয়কঃ কোনো রাসায়নিক বিক্রিয়ায় যে পদার্থ বিক্রিয়ায় অংশগ্রহণ করে তাকে বিক্রিয়ক বলে।

উৎপাদঃ কোনো রাসায়নিক বিক্রিয়ায় যে পদার্থ উৎপন্ন হয় তাকে উৎপাদ বলে।

রাসায়নিক বিক্রিয়ার শ্রেণীবিভাগ

তিনটি বিষয়ের উপর ভিত্তি করে রাসায়নিক বিক্রিয়া শ্রেণীবিভাগ করা হয়।

- 1. রাসায়নিক বিক্রিয়ার দিক
- 2. রাসায়নিক বিক্রিয়ার তাপের পরিবর্তন
- 3. ইলেকট্রন আদান প্রদান

দিকের উপর ভিত্তি করে রাসায়নিক বিক্রিয়া দুই প্রকারঃ

ক) এক মুখী বিক্রিয়া ও খ) উভমুখী বিক্রিয়া

ক) একমুখী বিক্রিয়া: যে বিক্রিয়ায় শুধু বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হয় কিন্তু উৎপাদ থেকে বিক্রিয়ক উৎপন্ন হয়না তাকে এক মুখী বিক্রিয়া বলে।

একমুখী বিক্রিয়া শুধু সম্মুখদিকে অগ্রসর হয়। এ বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মধ্যে একমুখী (———) চিহ্ন ব্যবহার করা হয়। যেমন : পটাসিয়াম ক্লোরেটকে উত্তপ্ত করলে এটি বিয়োজিত হয়ে পটাসিয়াম ক্লোরাইড ও অক্সিজেন উৎপন্ন হয়। বিপরীতভাবে, পটাসিয়াম ক্লোরাইড ও অক্সিজেনের মধ্যে কোনো বিক্রিয়া ঘটে না। সুতরাং, এটি একটি একমুখী বিক্রিয়া।

$$2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$$

একই ঘটনা ঘটে ক্যালসিয়াম কার্বোনেটকে তাপ দিলেওঃ

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

খ) DfgLx nenuqv : যদি কোনো বিক্রিয়ায় একইসাথে বিক্রিয়ক থেকে উৎপাদ ও উৎপাদ থেকে বিক্রিয়ক উৎপন্ন হয় তবে ওই বিক্রিয়াকে উভমুখী বিক্রিয়া বলে।

উভমুখী বিক্রিয়ায় বিক্রিয়কসমূহ কখনোই সম্পূর্ণরূপে উৎপাদে পরিণত হয় না। নির্দিষ্ট তাপমাত্রা ও চাপে বিক্রিয়কের একটি অংশমাত্র উৎপাদে পরিণত হয়।

উভমুখী বিক্রিয়ায় বিক্রিয়ক এবং উৎপাদের মধ্যে উভমুখী তীর চিহ্ন (======) ব্যবহার করা হয়। যেমনঃ

$$H_2 + I_2 = 2HI$$

$$N_2 + 3H_2 = 2NH_3 + 92 \text{ kJ } (\Delta H = 92 \text{ kJ})$$

তাপের আদান প্রদানের উপর ভিত্তি করে রাসায়নিক বিক্রিয়া দুই প্রকারঃ
তাপ উৎপাদী বিক্রিয়া ও তাপহারী বিক্রিয়া

ক) তাপ উৎপাদী বিক্রিয়া (Exothermic Reaction): যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপ উৎপন্ন হয় তাকে তাপ উৎপাদী বিক্রিয়া বলে।

যেমন : হাইড্রোজেন ও নাইট্রোজেনের বিক্রিয়ায় অ্যামোনিয়া উৎপন্ন হয় এবং এতে তাপ উৎপন্ন হয়। তাই এটি একটি তাপোৎপাদী বিক্রিয়া।

$$N_2 + 3H_2 = Pe = 2NH_3 + 92 \text{ kJ}$$
 $(\Delta H = -92 \text{ kJ})$

*তাপ উৎপাদী বিক্রিয়ায় তাপের পরিবর্তন ΔH ঋণাত্মক হয়।

খ<mark>)তাপহারী বিক্রিয়া (Endothermic Reaction):</mark> যে রাসায়নিক বিক্রিয়ায় বিক্রিয়ক থেকে উৎপাদ উৎপন্ন হওয়ার সময় তাপ শোষিত হয় তাকে তাপ হারী বিক্রিয়া বলে। যেমন :

নাইট্রোজেন এবং অক্সিজেনের সংযোগে নাইট্রিক অক্সাইড গ্যাস উৎপন্ন হয় এবং তাপ শোষিত হয়। এই বিক্রিয়াটি কে আমরা নিম্নোক্ত দুইভাবে প্রকাশ করতে পারি।

$$N_2 + O_2 = 2NO - 180 \text{ kJ}$$

 $N_2 + O_2 = 2NO \quad (\Delta H = 180 \text{ kJ})$

*তাপহারী বিক্রিয়ায় তাপের পরিবর্তন ∆H ধনাত্মক হয়।

ইলেকট্রন আদান প্রদানের উপর ভিত্তি করে বিক্রিয়া দুই প্রকার।

জারণ বিক্রিয়া ও বিজারণ বিক্রিয়া

জারণ (Oxidation) বিক্রিয়া ও বিজারণ (Reduction) বিক্রিয়াকে একত্রে রেডক্স বিক্রিয়া বলা হয়।

রেডক্স বিক্রিয়া : রেডক্স অর্থ জারণ-বিজারণ। যে বিক্রিয়া ইলেকট্রন স্থানান্তরের মাধ্যমে সংঘটিত হয় তাকে জারণ-বিজারণ বিক্রিয়া বা রেডক্স বিক্রিয়া বলে। এতে বিক্রিয়কের জারণ সংখ্যার পরিবর্তন হয়।

জারণ সংখ্যা: যৌগ গঠনের সময় কোনো মৌল যত সংখ্যক ইলেকট্রন বর্জন করে ধনাত্মক আয়ন উৎপন্ন করে অথবা যত সংখ্যক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়ন উৎপন্ন করে তাকে মৌলের জারণ সংখ্যা বলে। নিরপেক্ষ বা মুক্ত মৌলের জারণ সংখ্যা শূন্য (o) ধরা হয়। ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হলে মৌলের জারণ সংখ্যাকে ঋণাত্মক জারণ সংখ্যা এবং ইলেকট্রন বর্জন করে ধনাত্মক আয়নে পরিণত হলে মৌলের জারণ সংখ্যাকে ধনাত্মক জারণ সংখ্যা বলে।

<mark>জারক ও বিজারক পদার্থ :</mark> জারণ-বিজারণ বিক্রিয়ার সময় যে বিক্রিয়ক ইলেকট্রন গ্রহণ করে তাকে জারক পদার্থ এবং যে বিক্রিয়ক ইলেকট্রন বর্জন করে তাকে বিজারক পদার্থ বলে।

অর্থাৎ, জারক পদার্থ ইলেকট্রন গ্রহণ করার মাধ্যমে নিজে বিজারিত হয় এবং বিজারক পদার্থ ইলেকট্রন ত্যাগ করার মাধ্যমে জারিত হয়।

জারণ ও বিজারণ একই সঙ্গে ঘটে: রাসায়নিক বিক্রিয়ায় জারণ ও বিজারণ বিক্রিয়া একই সঙ্গে ঘটে। কারণ, জারণ ক্রিয়ায় কোনো পরমাণু বা মূলক ইলেকট্রন ত্যাগ করে, বিজারণ ক্রিয়ায় কোনো পরমাণু বা মূলক পদার্থ ঐ ইলেকট্রন গ্রহণ করে। সুতরাং, জারণ ক্রিয়া ঘটলে বিজারণ ক্রিয়াও ঘটবেই। একারণে, জারণ ও বিজারণ বিক্রিয়াকে একত্রে যুগপৎ বিক্রিয়া বলা হয়।

জারণ-বিজারণ নিয়ে একটি প্রশ্ন আলোচনা

প্রশ্নঃ নিচের বিক্রিয়াটি জারণ-বিজারণ কিনা আলোচনা করো।

$$FeCl_2 + Cl_2 \longrightarrow FeCl_3$$

উত্তরঃ জারণ মান সহ উপরের বিক্রিয়াটি লিখে পাই,

$$Fe^{2+}Cl_2^{-1}+Cl_2^0 \longrightarrow Fe^{3+}Cl_3^{-1}$$

বিক্রিয়াটিতে দেখতে পাওয়া যাচ্ছে যে, Fe^{2+} **একটি** ইলেকট্রন ত্যাগ করে Fe^{3+} **এ** পরিণত হয়। আমরা জানি, কোনো রাসায়নিক স্বত্বা যখন ইলেকট্রন ত্যাগ করে তখন তাকে জারণ বিক্রিয়া বলে। তাই এখানে Fe^{2+} এর জারণ ঘটেছে। অর্থাৎ.

$$Fe^{2+}-e\longrightarrow Fe^{3+}$$
 (জারণ বিক্রিয়া)

একইভাবে,

বিক্রিয়াটিতে দেখতে পাওয়া যাচ্ছে যে, Cl^0 **একটি** ইলেকট্রন গ্রহণ করে Cl^{-1} **এ** পরিণত হয়। আমরা জানি, কোনো রাসায়নিক স্বত্বা যখন ইলেকট্রন গ্রহণ করে তখন তাকে বিজারণ বিক্রিয়া বলে। তাই এখানে Cl এর জারণ ঘটেছে। অর্থাৎ.

$$Cl^{0+} + e \longrightarrow Cl^{-1}$$
 (বিজারণ বিক্রিয়া)

অর্থাৎ,

জারণ অর্ধ বিক্রিয়াঃ
$$Fe^{2+}-e\longrightarrow Fe^{3+}$$

বিজারণ অর্ধ বিক্রিয়াঃ
$$Cl^{0+}+e \longrightarrow Cl^{-1}$$
 $Fe^{2+}+Cl^{0+} \longrightarrow Fe^{3+} + Cl^{-1}$

তাহলে, বলা যায় উপরের বিক্রিয়ায় জারণ ও বিজারণ একইসাথে ঘটে অর্থাৎ, জারণ-বিজারণ একটি যুগপৎ বিক্রিয়া।

কিছু রেডক্স বিক্রিয়া

কিছু বিক্রিয়া আছে যেগুলোতে সবসময় জারণ-বিজারণ প্রক্রিয়া ঘটে। তাই এগুলোকে রেডক্স বিক্রিয়া বলে। যেমনঃ

ক) সংযোজন বিক্রিয়া : দুই বা ততোধিক যৌগ বা মৌল যুক্ত হয়ে নতুন যৌগ উৎপন্ন হওয়ার প্রক্রিয়ার নাম সংযোজন বিক্রিয়া। যেমন :

$$2\text{FeCl}_2(\text{aq}) + \text{Cl}_2(\text{g}) \rightarrow 2\text{FeCl}_3(\text{aq})$$

সংশ্লাষেণ বিক্রিয়াঃ যে বক্রিয়ায় একাধকি মৌল পরস্পররে সাথে বিক্রিয়া করে যৌগ তৈরি করে তাকে সংশ্লাষেণ বিক্রিয়া বলে। মূলত, সংশ্লাষেণ বিক্রিয়াও এক ধরনের সংযোজন বিক্রিয়া। যেমনঃ

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

খ) বিযোজন বা বিয়োজন বিক্রিয়াঃ কোনো যৌগকে ভেঙে একাধিক যৌগ বা মৌলে পরিণত করার প্রক্রিয়ার নাম বিযোজন বিক্রিয়া l যেমন :

$$\mathrm{PCl}_{5}\left(l\right) \xrightarrow{\triangle} \mathrm{PCl}_{3}(l) + \mathrm{Cl}_{2}\left(g\right); \ 2\mathrm{H}_{2}\mathrm{O}\left(l\right) \xrightarrow{} \boxed{\mathsf{Disc}} \boxed{\mathsf{বিশ্লোষণ}} \ 2\mathrm{H}_{2}\left(g\right) + \mathrm{O}_{2}\left(g\right)$$

গ) cliZ vcb wewµqv: Kvcbv যৌdMi GKwU মৌল বা যৌগমূলকK Aci Kvcbv মৌল বা যৌগমূলক দারা প্রতিস্পcb Kci bZb যৌগ উৎপনু করার প্রক্রিয়ার নাম প্রতিস্থাপন বিক্রিয়া। যেমন:

$$Zn\left(s\right) + H_2SO_4\left(aq\right) \rightarrow ZnSO_4\left(aq\right) + H_2\left(g\right); \ 2Na\left(s\right) + CuSO_4(aq) \rightarrow Na_2SO_4(aq) + Cu(s)$$

च) `nb wewpqv : ৻Kvcbv মৌলে৻ ev যৌগে৻ evqyi Aw ৻Rcbi Dcw wZ৻Z cyno৻q Zvi Dcv vb মৌ৻j i A vB৻W cwi YZ করার প্রক্রিয়াকে দহন বিক্রিয়া বলে। যেমন :

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g); C(s) + O_2(g) \rightarrow CO_2(g)$$

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

এই প্রক্রিয়ায়, মিথেন কে জ্বালানি হিসেবে পুড়িয়ে আমরা তাপ ও আলোক শক্তি পাই। শুধু মিথেন না এই প্রক্রিয়ায় ডিজেল, কেরোসিন, পেট্রোল, অকটেন, CNG ইত্যাদি জ্বালিয়েও শক্তি পাওয়া যায়।

নন-রেডক্স বিক্রিয়া

এক বা একাধিক বিক্রিয়ক থেকে নতুন যৌগ উৎপন্ন হওয়ার সময় বিক্রিয়কে বিদ্যমান মৌলসমূহের মধ্যে ইলেকট্রন আদান-প্রদান না হলে বিক্রিয়াকে নন-রেডক্স বিক্রিয়া বলে।

যেমনঃ প্রশমন বিক্রিয়া ও অধঃক্ষেপণ বিক্রিয়া হচ্ছে নন-রেডক্স বিক্রিয়া।

ক) ckgb wewpqv: Rj xq `etY GwmW I ÿvi wewpqv Kরে লবণ ও পানি উৎপন্ন করার বিক্রিয়ােtK ckgb wewpqv etj | ckgb বিক্রিয়া সম্পন্ন হলে pH-Gi qvb ७ হয়। যেমন:

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2(l)$

প্রশমন বিক্রিয়া সম্পর্কিত কিছু প্রশ্ন

প্রশ্ন ১: আমাদের পেটে এসিডিটির সমস্যা হলে আমরা এন্টাসিড কেন খাই?

উত্তরঃ আমাদের পেটে এসিডিটির সমস্যার কারণ মূলত হাইড্রোক্লোরিক এসিড। আর এন্টাসিডে থাকে ম্যাগনেসিয়াম হাইড্রোক্সাইড ও অ্যালুমিনিয়াম হাইড্রোক্সাইড যেগুলো মূলত ক্ষার।

আমরা যখন এন্টাসিড খাই তা পেটে থাকে এসিডের সাথে বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে যা একটি প্রশমন বিক্রিয়া। এইভাবে প্রশমন বিক্রিয়ার মাধ্যমে আমাদের পেটের এসিডিটির সমস্যা দূর হয়।

প্রশ্ন ২: পিঁপড়া বা মৌমাছি কামড় দিলে আমরা চুন লাগাই কেন?

উত্তরঃ পিঁপড়া বা মৌমাছির কামড়ে এসিড থাকে। তাই কামড়ের পর আমাদের ঐ স্থানে জ্বালাপোড়া সৃষ্টি হয়। কিন্তু যখন চুন লাগিয়ে দেওয়া হয় তখন তা এসিডের সাথে প্রশমন বিক্রিয়া করে। কারণ, চুন মূলত ক্ষার। এইভাবে চুন ও এসিড পরস্পর বিক্রিয়া করে লবণ ও পানি উৎপন্ন করে। (পিঁপড়ায় যে এসিড থাকে তাকে ফরমিক এসিড বলে)

প্রশ্ন ৩: ছাদ পিচ্ছিল হয়ে গেলে বালি দেওয়া হয় কেন?

উত্তরঃ বর্ষাকালে বৃষ্টির কারণে ছাদে শ্যাওলা তৈরি হয় এবং এগুলো ক্ষারীয় প্রকৃতির হওয়ায় ছাদ পিচ্ছিল হয়ে যায়। কিন্তু যখন এতে বালি দেওয়া হয় তখন বালি ও শ্যাওলাগুলো পরস্পর প্রশমন বিক্রিয়ায় অংশগ্রহণ করে। কেননা, বালি হচ্ছে এসিড প্রকৃতির। যেহেতু এসিড ও ক্ষার এখানে প্রশমন বিক্রিয়ায় অংশগ্রহণ করে লবণ ও পানি উৎপন্ন করে তাই ছাদে আর পিচ্ছিল ভাব থাকেনা।

খ) AatcÿcY wewµqv : যে বিক্রিয়ায় উৎপন্ন যৌগ অধঃcÿc wncmce cvcl i Zj দেনেk Rgv nq ZvcK AatcÿcY wewµqv ecj | অধঃক্ষেপকে প্রকাশ করার জন্য উৎপাদের সামনে ↓ চিহ্ন ব্যবহার করা হয়। যেমন :

 $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl(s)$

আরো কিছু বিশেষ ধরনের বিক্রিয়া

ক) আর্দ্রবিশ্লেষণ বা পানি বিশ্লেষণ বিক্রিয়া : পানির অণুতে ধনাত্মক হাইড্রোজেন আয়ন ও ঋণাত্মক হাইড্রোক্সিল আয়ন থাকে। কোনো যৌগের দুই অংশ পানির বিপরীত আধানবিশিষ্ট দুই অংশের সাথে যুক্ত হয়ে নতুন যৌগ উৎপন্ন করে। এই বিক্রিয়াকে আর্দ্রবিশ্লেষণ বিক্রিয়া বলে। যেমন :

 $AlCl_3(s) + 3H_2O(l) \rightarrow Al(OH)_3(s) + 3HCl(aq)$

 $SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$

মূলত এই বিক্রিয়ায় পানির অণু বিশ্লেষিত হয়ে আলাদা আলাদা যৌগ তৈরি করে তাই এটি পানি বিশ্লেষণ বিক্রিয়া।

খ) পানিযোজন বিক্রিয়া : আয়নিক যৌগ কেলাস গঠনের সময় এক বা একাধিক সংখ্যক পানির অণুর সাথে যুক্ত হয়। এই বিক্রিয়াকে পানিযোজন বিক্রিয়া বলে। যেমন :

$$CaCl_2 + 6H_2O \rightarrow CaCl_2.6H_2O$$

 $MgCl_2 + 7H_2O \rightarrow MgCl_2.7H_2O$
 $CuSO_4 + 5H_2O \rightarrow CuSO_4.5H_2O$

গ) সমাণুকরণ বিক্রিয়া : একই আণবিক সংকেতবিশিষ্ট দুটি যৌগের ধর্ম ভিন্ন হলে তাদেরকে পরস্পরের সমাণু বলে। সমাণুকরণ বিক্রিয়া : একই আণবিক সংকেতবিশিষ্ট দুটি যৌগের ধর্ম ভিন্ন হলে তাদেরকে পরস্পরের সমাণু বলে।

যেমন : C_2H_6O আণবিক সংকেত বিশিষ্ট দুটি যৌগ CH_3CH_2OH (B_1V_2OH (B_2V_2OH (B_3OCH_3 (WB_3OCH_3 (B_2V_2OH (B_3OCH_3 ($B_$

- **ঘ) পলিমারকরণ বিক্রিয়া :** যে বিক্রিয়ায় অসংখ্য মনোমার থেকে পলিমার উৎপন্ন হয় তাকে পলিমারকরণ বিক্রিয়া বলে। যেমনঃ ইথিন থেকে উচ্চ তাপ ও চাপের মাধ্যমে পলিথিন তৈরি হয়।
- **ঙ) মরিচা তৈরিঃ** লোহার তৈরি কোনো জিনিস খোলা জায়গায় রাখলে দেখা যায় তা ভঙ্গুর প্রকৃতির হয়ে যায় এবং চাপ প্রয়োগ করলে তা আন্তে আন্তে গুড়া আকারে ভেঙ্গে পড়ে। এগুলো মূলত লোহার মরিচা।

মরিচা উৎপন্ন হয় যখন লোহা পানি ও অক্সিজেনের সাথে বিক্রিয়া করে। খোলা জায়গায় অক্সিজেনের পাশাপাশি জলীয় বাষ্প থাকে যার কারণে লোহায় ধীরে ধীরে মরিচা তৈরি হয়।

প্রশ্নঃ মরিচা রোধে কি করা যায়?

উত্তরঃ মরিচা রোধে মূলত লোহাকে পানি ও অক্সিজেনের সাথে সংস্পর্শে আসতে দেওয়া যাবেনা। কারণ, পানি ও অক্সিজেন এই দুইটির মধ্যে কোনো একটি অনুপস্থিত থাকলেই লোহা আর মরিচা পড়বে না।

তাহলে লোহার তৈরি কোনো জিনিস যদি রঙ করে রাখা হয় অক্সিজেন বা জলীয় বাষ্প লোহার সংস্পর্শে যেতে পারেনা। তাই, মরিচাও পডে না।

আবার যদি লোহাকে তেল বা কেরোসিনের মধ্যে ডুবিয়ে রাখা হয় তখন জলীয় বাষ্প বা অক্সিজেন কোনটিই ভেতরে যেতে পারেনা তাই মরিচা ও পডে না।

আবার, লোহার উপর যদি অন্যকোনো ধাতুর প্রলেপ দেওয়া যায় তখনও এতে মরিচা পড়ে না। কারণ, সেই ধাতুর স্তর ভেদ করে অক্সিজেন বা পানি কোনটিই যেতে পারেনা।

তবে, তড়িৎ বিশ্লেষণ প্রক্রিয়ায় লোহার উপর অন্য একটি ধাতুর প্রলেপ দিতে হয় যাকে বলা হয় ইলেক্ট্রোপ্লেটিং বা তড়িৎ প্রলেপন।

২

ইলেকট্রোপ্লেটিং: তড়িৎ বিশ্লেষণ প্রক্রিয়ায় কোনো ধাতুর উপর অন্য একটি ধাতুর প্রলেপ দেয়াকে ইলেকট্রোপ্লেটিং বলা হয়। কোনো কোনো ধাতুর তৈরি জিনিসপত্রকে জলবায়ু এবং বায়ুর অক্সিজেনের প্রকোপ থেকে রক্ষা করা এবং দেখতে সুন্দর ও আকর্ষণীয় করে তোলাই ইলেকট্রোপ্লেটিং-এর উদ্দেশ্য।

গ্যালভানাইজিংঃ তড়িৎ বিশ্লেষণ প্রক্রিয়ায় যখন কোনো ধাতুর উপর জিংক এর প্রলেপ দেওয়া হয় তখন তাকে গ্যালভানাইজিং বলে।

টিন প্লেটিংঃ তড়িৎ বিশ্লেষণ প্রক্রিয়ায় যখন কোনো ধাতুর উপর টিন এর প্রলেপ দেওয়া হয় তখন তাকে টিন প্লেটিং বলে।

চ) শ্বসন বিক্রিয়াঃ শ্বসন প্রক্রিয়ায় গ্লুকোজ অক্সিজেনের সাথে বিক্রিয়া করে কার্বন ডাই অক্সাইড, পানি ও শক্তি উৎপন্ন করে।
এখানে গ্লুকোজ অক্সিজেনের সাথে মূলত জারিত হয়ে এই বিক্রিয়া সম্পন্ন করে।

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + *16$$

এখানে, যেহেতু এই শ্বসন বিক্রিয়ায় গ্লুকোজের সাথে অক্সিজেন যুক্ত হয় তাই এখানে মূলত সবাত শ্বসন ঘটে।

বিক্রিয়ার গতি, সাম্যাবস্থা ও লা-শাতেলিয়ার নীতি

<mark>বিক্রিয়ার গতিবেগ বা বিক্রিয়ার হার :</mark> একক সময়ে একটি বিক্রিয়ার বিক্রিয়কসমূহের ঘনমাত্রা কতটুকু হ্রাস পায় বা উৎপাদের ঘনমাত্রা কতটুকু বৃদ্ধি পায় তাকে বিক্রিয়ার হার বা গতি বলে। বিক্রিয়ার হার বা গতিবেগের একক হচ্ছে $mol L^{-1} s^{-1}$ ।

<mark>রাসায়নিক সাম্যাবস্থা :</mark> যে অবস্থায় কোনো উভমুখী বিক্রিয়ার সম্মুখ বিক্রিয়ার গতিবেগ ও বিপরীতমুখী বিক্রিয়ার গতিবেগ পরস্পর সমান হয় সে অবস্থাকে রাসায়নিক সাম্যাবস্থা বলে।

বিক্রিয়ার উভমুখিতার ফলেই সাম্যাবস্থার উদ্ভব ঘটে। একটি উভমুখী বিক্রিয়ার শুরুতে সম্মুখ বিক্রিয়ার বেগ সবচেয়ে বেশি থাকবে এবং বিপরীত বিক্রিয়ার বেগ কম থাকবে। সময়ের সঙ্গে বিক্রিয়কের বিক্রিয়ার গতির পরিমাণ কমতে থাকবে ও উৎপাদের পরিমাণ বাড়তে থাকবে। এক সময় উভয় দিক থেকেই বিক্রিয়ার গতিবেগ সমান হয়ে যায় বলে আমাদের কাছে মনে হয় বিক্রিয়াটি থেমে গিয়েছে। কিন্তু এই অবস্থায়ও বিক্রিয়া চলতে থাকে। তাই বলা যায়, সাম্যাবস্থা একটি গতিশীল অবস্থা।

সাম্যাবস্থা পরিবর্তন করা যায় বিক্রিয়ায় তাপ, চাপ, ঘনমাত্রা পরিবর্তনের মাধ্যমে, তাই এগুলোকে নিয়ামক বলা হয়।

<mark>লা-শাতেলিয়ার নীতি :</mark> কোনো রাসায়নিক বিক্রিয়ার সাম্যাবস্থায় থাকাকালে যদি তাপ, চাপ, ঘনমাত্রা ইত্যাদি পরিবর্তন করা হয়। তবে সাম্যের অবস্থান এমনভাবে পরিবর্তিত হয় যেন তাপ, চাপ, ঘনমাত্রা ইত্যাদি পরিবর্তনের ফলাফল প্রশমিত হয়।

রাসায়নিক সাম্যাবস্থার ওপর তাপমাত্রা, চাপ ও ঘনমাত্রার প্রভাব :

তাপের প্রভাবঃ সকল উভমুখী তাপহারী বিক্রিয়ায় তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থা সামনের দিকে বা ডান দিকে অর্থাৎ বিক্রিয়ক থেকে উৎপাদের দিকে অগ্রসর হয়। আর তাপমাত্রা হ্রাস করলে তা পশ্চাৎ দিকে বা বাম দিকে অর্থাৎ উৎপাদ থেকে বিক্রিয়কের দিকে স্থানান্তরিত হয়।

অন্যদিকে, সকল উভমুখী তাপ উৎপাদী বিক্রিয়ায় তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থার অবস্থান পশ্চাৎ দিকে বা বাম দিকে অর্থাৎ উৎপাদ থেকে বিক্রিয়কের দিকে এবং তাপমাত্রা হ্রাস করলে তা সম্মুখ দিকে বা ডানদিকে অর্থাৎ বিক্রিয়ক থেকে উৎপাদের দিকে স্থানান্তরিত হয়।

চাপের প্রভাবঃ কঠিন ও তরল মাধ্যমে বিক্রিয়ার ক্ষেত্রে চাপের কোনো প্রভাব নেই। যে বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মোট মোল সংখ্যার পার্থক্য না থাকে সেই বিক্রিয়াতেও চাপের প্রভাব থাকে না।

তাহলে বলা যায়, চাপের প্রভাব তখনই থাকবে যখনঃ

- বিক্রিয়ায় কোনো গ্যাসীয় পদার্থ থাকবে
- বিক্রিয়ক ও উৎপাদের মোট মোল সংখ্যার পার্থক্য থাকবে

এমন বিক্রিয়ায় চাপ বাড়ানো হলে যেদিকে মোল সংখ্যা বেশি থাকবে সেদিক থেকে কম মোল সংখ্যার দিকে বিক্রিয়ার সাম্যাবস্থা গতিশীল হবে। আর চাপ কমানো হলে কম মোল সংখ্যার দিক থেকে বেশি মোল সংখ্যার দিকে বিক্রিয়া অগ্রসর হবে।

ঘনমাত্রার প্রভাবঃ

কোনো উভমুখী বিক্রিয়ার সাম্যাবস্থায় বিক্রিয়কের ঘনমাত্রা বাড়ালে বিক্রিয়া উৎপাদের দিকে যাবে; উৎপাদের ঘনমাত্রা বাড়লে বিক্রিয়া পেছনের দিকে অর্থাৎ বিক্রিয়কের দিকে যাবে।

পূর্ণাঙ্গ প্রস্তুতি নিতে আমাদের পেইড কোর্সে ভর্তি হয়ে নাও এখনই!

ভর্তি হতে কল করোঃ 01718-862020 নম্বরে।